The future of endoscopic treatment of early Barrett neoplasia: The endoscopist’s view

Introduction

The field of Barrett’s esophagus ablation has advanced dramatically in recent years. Endoscopic ablation is now viewed as a legitimate first-line treatment option for healthy patients with high grade dysplasia and early adenocarcinoma, based on studies performed to date. Furthermore, the notion of complete ablation of Barrett’s esophagus has moved from concept to reality. Many questions have been answered, but many remain including issues relating to optimal technique, appropriate patient selection, predictors of response, and behavior of the cardia after ablation. This paper attempts to address the following questions with regard to endoscopic ablation of Barrett’s esophagus: (i) Where have we been? (ii) Where are we now? (iii) What issues regarding endoscopic ablation are currently unresolved? (iv) What are potential solutions for these issues?

Where have we been?

The concept of endoscopic ablation emerged in 1992 with the work of Brandt and Berenson in the early 1990s [1,2]. In fact, ablation is now viewed as a legitimate first-line treatment option for healthy patients with high grade dysplasia and early adenocarcinoma, based on studies performed to date. Furthermore, the notion of complete ablation of Barrett’s esophagus has moved from concept to reality. That being said, many questions about endoscopic ablation of Barrett’s esophagus remain unanswered. This section will try to address the following issues regarding the endoscopic ablation of Barrett’s esophagus:
1. Where have we been?
2. Where are we now?
3. What are currently unresolved issues in endoscopic ablation?
4. What are potential solutions for these issues?

The field of Barrett’s esophagus ablation has advanced dramatically in recent years. Endoscopic ablation is now viewed as a legitimate first-line treatment option for healthy patients with high grade dysplasia and early adenocarcinoma, based on studies performed to date. Furthermore, the notion of complete ablation of Barrett’s esophagus has moved from concept to reality. Many questions have been answered, but many remain including issues relating to optimal technique, appropriate patient selection, predictors of response, and behavior of the cardia after ablation. This paper attempts to address the following questions with regard to endoscopic ablation of Barrett’s esophagus: (i) Where have we been? (ii) Where are we now? (iii) What issues regarding endoscopic ablation are currently unresolved? (iv) What are potential solutions for these issues?

Where have we been?

The concept of endoscopic ablation emerged in 1992 with the work of Brandt and then Berenson, who demonstrated that re-injury to metaplastic epithelium followed by healing in an environment characterized by aggressive control of acid could lead to re-epithelialization with a neosqua-
Randomized controlled trials have now compared a variety of ablative techniques with one another. These clinical trials have highlighted the difficulty in obtaining complete endoscopic and histologic ablation with argon plasma coagulation, multipolar electrocautery, and photodynamic therapy with 5-aminolevulinic acid [21–23]. Randomized controlled studies have evaluated photodynamic therapy and radiofrequency ablation compared with a strategy of continued surveillance for patients with high-grade dysplasia and low-grade dysplasia [24, 25]. These studies represent a dramatic improvement in the quality of the work in this field and demonstrate the potential as well as the limitations of these techniques. The 5-year results of a randomized controlled trial of photodynamic therapy alone versus continued surveillance for high-grade dysplasia showed that at 5 years, complete ablation of high-grade dysplasia was achieved in only 48%, and progression to cancer occurred in 15% [26]. While the results were superior to those of the control arm, one can argue that the “juice is not worth the squeeze” for this technique, given the continued risk of cancer and need for surveillance, along with the cost and morbidity of this procedure. The 1-year results for radiofrequency ablation compared with sham therapy in high-grade and low-grade dysplasia have been submitted for publication (N. Shaheen, personal communication). Multicenter studies are now the norm rather than the exception. These studies all demonstrate the long-term efficacy of endoscopic therapy compared with other treatments for intraepithelial neoplasia. Furthermore, there is an emerging consensus on the need to completely remove all at-risk mucosa rather than leave any metaplastic epithelium behind. This has led to the increasing popularity of multimodal therapy with endoscopic mucosal resection plus either continued wide area endoscopic mucosal resection or thermal ablative techniques to eliminate the remaining at-risk mucosa. Recent studies now indicate that complete ablation of Barrett’s esophagus with endoscopic mucosal resection in combination with radiofrequency ablation is now feasible (Fig. 1).

In addition, new techniques are now routinely evaluated in animal models to determine the depth and type of injury from various ablative techniques, as well as the time course of the injury. The studies on radiofrequency ablation have involved a stepwise progression from animal studies, to human studies prior to esophagectomy, to human dosimetry studies, single-center studies, multicenter nonrandomized studies, and now multicenter randomized controlled trials [25, 27–30]. This process has also led to modifications in the radiofrequency ablation technique and the development of the focal ablation device. Regardless of the eventual role of radiofrequency ablation, this series of studies illustrates the steps that need to be taken in the development and application of ablative technologies in the future. This is perhaps easier said than done, given the economic realities involved in the development of endoscopic therapeutic technologies. Nevertheless, the importance of animal work prior to widespread clinical application cannot be overstated.

The emergence of endoscopic mucosal resection as both a diagnostic and therapeutic tool has changed the landscape of ablation therapy (Fig. 2).

Endoscopic mucosal resection of visible lesions in patients with high-grade dysplasia and superficial adenocarcinoma has come of age, thanks in part to the pioneering work of the Wiesbaden group which has demonstrated 5-year survival of 98% for meticulously selected patients with early esophageal adenocarcinoma treated by endoscopic mucosal resection [31]. Endoscopic mucosal resection of visible lesions in patients with high-grade dysplasia is now recommended in clinical practice guidelines [32]. Finally, the emerging concept of the combination of endoscopic mucosal resection of visible lesions with either circumferential endoscopic mucosal resection or thermal injury treatment of the remaining at-risk mucosa is becoming established. The rationale for this relates to the high metachronous cancer rate found by the Wiesbaden group along with the concept that at-
risk mucosa, with its persistent molecular abnormalities remains after endoscopic mucosal resection. In 2008, exciting work from the Amsterdam group described the technique of circumferential and focal ablation in a small number of Barrett’s patients with residual dysplasia after endoscopic mucosal resection of visible lesions [33,34]. Gondrie et al. found complete absence of Barrett’s epithelium, dysplasia, cancer, and buried intestinal metaplasia in all patients studied, at a median follow-up of 14 months. These findings suggest that the concept of complete ablation of Barrett’s esophagus and superficial cancer is now feasible.

It appears that many techniques evaluated to date have fallen by the wayside or are about to do so. These include multipolar electrocoagulation, the heater probe, argon plasma coagulation, laser treatment, and, in all likelihood, photodynamic therapy in its current variations. The reasons for the probable demise of these techniques include difficulty in obtaining uniform ablation, cost, side effects and persistent endoscopically evident or microscopic columnar epithelium after therapy. Current techniques still in play include radiofrequency ablation, cryotherapy, endoscopic mucosal resection, endoscopic submucosal dissection, and combinations of these techniques. The only conceivable role at present for techniques such as multipolar electrocoagulation and argon plasma coagulation is for dealing with small islands and areas of residual Barrett’s esophagus after treatment with another, more effective modality. While no comparative data are available, studies to date suggest that the focal radiofrequency ablation probe may be a better choice at present.

It is now clear that for any technique to have value, it must be inexpensive, safe, simple to apply, require a limited number of sessions for application, completely eliminate columnar epithelium, eliminate or decrease cancer or progression risk, and possibly decrease the need for surveillance. Furthermore, it is essential that techniques provide a uniform application to the esophagus. This requires compensation for movement related to respiration and esophageal motility. With this in mind, the centering balloons used in photodynamic therapy and the balloon-based radiofrequency devices which isolate esophageal segments during the ablation procedure are appealing features of those methods.

We also need to keep in mind that the application of these techniques also requires rigorous patient selection, high quality imaging and staging prior to application, and meticulous long-term follow-up.

What are currently unresolved issues in endoscopic ablation?

While the field of endoscopic ablation has advanced dramatically in recent years, there is much we still need to know.

What is the role of cryotherapy?

Cryotherapy remains under study as an ablative technique, either as a stand-alone approach or in combination with endoscopic mucosal resection. Animal studies have already been undertaken to determine depth of injury with this technique and the time course of the response to injury. However, data as to its efficacy in Barrett’s esophagus are very limited. Johnston et al. studied 11 patients, of whom seven showed complete endo-

Fig. 1 Endoscopic images of a C9M10 Barrett esophagus (“C&M,” circumference and maximal extent) with multifocal high grade dysplasia, treated with stepwise circumferential and focal radiofrequency ablation.

a, b Antegrade and retrograde view on a C9M10 Barrett segment, without visible lesions.

c Effect after primary circumferential ablation using the HALO³⁶⁰ system.

d At 2 months after circumferential ablation, two small residual islets of Barrett epithelium were detected with narrow-band imaging, and treated with secondary focal ablation using the HALO⁹⁰ system (12-o’clock position).

e, f At 2 months after the last ablation session, the esophagus has completely regenerated with normal-appearing neosquamous epithelium.
scopic and histologic reversal at 6 months [35]. Preliminary reports of cryotherapy were presented at Digestive Diseases Week (DDW) 2008 for a small group of patients with high grade dysplasia and cancer, and a randomized sham controlled study is now under way [36].

The appeal of cryotherapy is ease of use and relatively low cost. However, the uneven application inherent in spraying of the cryogen, rather than direct balloon-based application to isolated segments of the esophagus, is a matter of concern with this technique besides the lack of published data.

What is the role of radiofrequency ablation?

Studies to date have evaluated radiofrequency ablation in both nondysplastic and dysplastic Barrett’s epithelium. We now know that a combination of circumferential and focal probes provides optimal results, that this technique can be safely combined with endoscopic mucosal resection, and that buried intestinal metaplasia appears to be rare. We also know that this method does not completely eliminate cancer risk or progression of low grade dysplasia to high grade dysplasia [25]. Finally, published results for radiofrequency ablation are primarily from centers of excellence, however, only a limited number of patients have been studied, we still do not know about either long-term results beyond 2.5 years, or the safety and efficacy of the technique when used outside of expert centers. In contrast, longer-term results are available for photodynamic therapy, which suggest a favorable outcome when it is compared with esophageal resection [19].

What is the optimal role of endoscopic mucosal resection?

As mentioned above, endoscopic mucosal resection has come of age, either as a stand-alone technique or in combination with complete ablation of the Barrett’s segment. The key unresolved issue is the role of circumferential endoscopic mucosal resection. Studies to date suggest that circumferential endoscopic mucosal resection results in complete remission of intraepithelial neoplasia and Barrett’s epithelium in 75% to 100% of patients [37–40]. Complication rates vary, but early bleeding, the occasional perforation, and late strictures remain issues. Key unanswered questions related to endoscopic mucosal resection include the following:

1. What is the optimal technique?
2. Should it be limited to patients with nodules only, or should it be applied in patients with flat dysplasia?
3. What is the optimal role and setting for circumferential endoscopic mucosal resection?
4. What is the best way to avoid islands of residual epithelium between resection specimens?
5. Can complications, especially strictures, be avoided?

Where does endoscopic submucosal dissection fit in?

Endoscopic mucosal dissection has disseminated from Asia to Europe and North America. Studies suggest that it is feasible and effective in superficial adenocarcinoma of the gastroesophageal junction [41]. This technique allows for en bloc removal of larger tumors and avoids the problems in interpreting the lateral margins that are inherent in endoscopic mucosal resection.
normalization of esophageal acid exposure. Therapy should be applied to a given patient. Should endoscopic mucosal resection be limited to focal lesions only? What is the length threshold for circumferential endoscopic mucosal resection? Who should undergo thermal techniques and what parameters should be used to determine which patient should get which combination techniques? Is it time for aggressive ablation in patients with low grade or indefinite dysplasia? Most importantly, the issue of nondysplastic Barrett’s esophagus needs to be confronted.

There are two schools of thought in this regard. The first holds that, given the low risk of progression to cancer in a nondysplastic patient with Barrett’s esophagus, it is hard to justify an intervention unless it is safe, inexpensive, and easy to do. The other camp suggests that we should get rid of all Barrett’s epithelium, providing the potential to decrease or eliminate surveillance in the future. However, there are no data at present to justify such an approach.

Acid suppression

Aggressive acid suppression is typically part of the treatment plan of endoscopic ablation. However, it is well recognized that normalization of esophageal acid exposure is difficult to achieve in Barrett’s esophagus patients, even with high dose therapy [42]. Furthermore, studies have shown that Barrett’s esophagus may be reversed with multipolar electrocoagulation therapy despite abnormal esophageal acid exposure [43,44]. There is little if any proof that acid suppression or antireflux surgery prevents the development of cancer or dysplasia in the absence of endoscopic ablation. Nevertheless, the conditions still exist in patients with Barrett’s esophagus for the metaplastic epithelium to redevelop, and we still do not know the best way to prevent this on a long-term basis. Should patients routinely receive double dose or single dose proton pump inhibitor therapy? Should pH or impedance-pH monitoring be used to guide therapy? Given the risks of surgery, it is hard to imagine that routine antireflux surgery in conjunction with ablation will ever become a management strategy.

Buried intestinal metaplasia

While early data for radiofrequency ablation are promising, it is difficult to envisage that any technique will reliably eliminate all subsquamous intestinal metaplasia. Biomarker abnormalities persist in this epithelium, but we still do not know what degree of subsquamous columnar epithelium, if any, can be tolerated after ablation. Recent studies in a small number of patients with buried intestinal metaplasia after photodynamic therapy found that buried Barrett’s epithelium had reduced crypt proliferation and near normal DNA content compared with pretreatment Barrett’s epithelium, raising the question of the neoplastic potential of the buried Barrett’s epithelium [45]. Furthermore, better techniques for detecting buried columnar epithelium are needed. Confocal endomicroscopy is one such technique under study. Molecular marker development would also be helpful.

What is the appropriate depth of injury?

We know surprisingly little about the target depth of ablative techniques. As mentioned above, limited animal and human data are available from the full thickness of the esophagus. Biopsy work by Ackroyd et al. suggests that the thickness of Barrett’s columnar epithelium is approximately 0.6 mm [46]. Recent work from Leedham et al. suggests that molecular abnormalities may arise in esophageal submucosal glands [47]. If abnormalities may in fact originate that deeply, the target depth of injury may need to be reconsidered.

The cardia

Several reports suggest that the cardia behaves in unexpected and potentially undesirable ways after ablation therapy. Nodules with high grade dysplasia or cancer may develop months to years after therapy [48,49]. The reason for this is unknown. While squamous epithelium may develop below the gastroesophageal junction after ablation, it is unclear what is the natural history of that metaplastic mucosa [50]. Not only can problems develop at the cardia but it is difficult to apply techniques such as radiofrequency ablation to the cardia, even with the focal probe, due to positioning and the anatomic alterations in the setting of a large hiatal hernia.

What happens to the esophagus?

To date, limited human data are available regarding the results of applying ablative techniques to the esophagus. Motility appears to be unchanged. Despite the assumption that multipolar electrocoagulation resulted in only superficial injury to the esophagus, in a single patient who had been treated with multipolar electrocoagulation, subsequent esophagectomy for complications of antireflux surgery revealed complete elimination of intestinal metaplasia in the esophagectomy specimen but fibrosis, friability, and extensive adhesions to the pleura of the intrathoracic esophagus [51].

Predictors of response

What factors predict whether a patient will respond to a given therapy? Possible variables include segment length, hiatal hernia size, adequacy of acid suppression, and biomarker values. To date, one study has evaluated biomarkers as predictors of response to photodynamic therapy. Prasad et al. found that p16 loss, detected by fluorescence in situ hybridization of cytology specimens obtained prior to photodynamic therapy for high-grade dysplasia or intramucosal carcinoma, predicted a lesser response to photodynamic therapy [52]. While these factors are not ready for “prime time”, future studies will need to carefully examine biomarkers or other patient factors that predict response.

What are potential solutions to these issues?

As we look to the future, there is a clear need for answers to the above questions. I agree with the view of the Amsterdam group that future studies should emphasize a “top down” approach to evaluate these interventions in patients with intraepithelial neoplasia or dysplasia. More data, especially from long-term studies, are clearly called for with regard to cryotherapy, radiofrequency ablation, endoscopic mucosal resection, endoscopic submucosal dissection, and combinations of these techniques. The promising pilot work from Amsterdam demonstrating complete data are available from the full thickness of the esophagus. Biopsy work by Ackroyd et al. suggests that the thickness of Barrett’s columnar epithelium is approximately 0.6 mm [46]. Recent work from Leedham et al. suggests that molecular abnormalities may arise in esophageal submucosal glands [47]. If abnormalities may in fact originate that deeply, the target depth of injury may need to be reconsidered.

The cardia

Several reports suggest that the cardia behaves in unexpected and potentially undesirable ways after ablation therapy. Nodules with high grade dysplasia or cancer may develop months to years after therapy [48,49]. The reason for this is unknown. While squamous epithelium may develop below the gastroesophageal junction after ablation, it is unclear what is the natural history of that metaplastic mucosa [50]. Not only can problems develop at the cardia but it is difficult to apply techniques such as radiofrequency ablation to the cardia, even with the focal probe, due to positioning and the anatomic alterations in the setting of a large hiatal hernia.

What happens to the esophagus?

To date, limited human data are available regarding the results of applying ablative techniques to the esophagus. Motility appears to be unchanged. Despite the assumption that multipolar electrocoagulation resulted in only superficial injury to the esophagus, in a single patient who had been treated with multipolar electrocoagulation, subsequent esophagectomy for complications of antireflux surgery revealed complete elimination of intestinal metaplasia in the esophagectomy specimen but fibrosis, friability, and extensive adhesions to the pleura of the intrathoracic esophagus [51].

Predictors of response

What factors predict whether a patient will respond to a given therapy? Possible variables include segment length, hiatal hernia size, adequacy of acid suppression, and biomarker values. To date, one study has evaluated biomarkers as predictors of response to photodynamic therapy. Prasad et al. found that p16 loss, detected by fluorescence in situ hybridization of cytology specimens obtained prior to photodynamic therapy for high-grade dysplasia or intramucosal carcinoma, predicted a lesser response to photodynamic therapy [52]. While these factors are not ready for “prime time”, future studies will need to carefully examine biomarkers or other patient factors that predict response.

What are potential solutions to these issues?

As we look to the future, there is a clear need for answers to the above questions. I agree with the view of the Amsterdam group that future studies should emphasize a “top down” approach to evaluate these interventions in patients with intraepithelial neoplasia or dysplasia. More data, especially from long-term studies, are clearly called for with regard to cryotherapy, radiofrequency ablation, endoscopic mucosal resection, endoscopic submucosal dissection, and combinations of these techniques. The promising pilot work from Amsterdam demonstrating complete...
ablation needs confirmation in a larger number of patients at other centers. There is a clear need for multicenter randomized clinical trials that compare these different approaches. These studies should also allow us to refine predictors of response, be they clinical, endoscopic, or biomarker.

Furthermore, those involved in endoscopic ablation should develop some consensus on the components of pre-intervention staging and imaging along with post-intervention end points and surveillance. All parties need to acknowledge that given the high stakes involved in treating esophageal cancer, all bets are off with ablative technologies if endoscopists and patients do not adhere to rigorous and meticulous follow up protocols, the details of which need to be defined.

While the future of natural orifice transluminal endoscopic surgery (NOTES) as applied to gastrointestinal endoscopy remains hazy, clearly one can anticipate the emergence of better “tools of the trade”, especially for endoscopic mucosal resection and endoscopic submucosal dissection. We still need methods that reliably and predictably control the depth and homogeneity of injury to the esophagus. For any new technique that may be developed, the need will continue for well-crafted animal studies to determine depth of injury and dosimetry, like those performed for cryotherapy and radiofrequency ablation.

Barrett’s esophagus does not develop in a vacuum. Other factors that contribute to cancer risk in Barrett’s esophagus need to be studied in conjunction with ablation, including age, gender, obesity, tobacco use, hiatal hernia size, ongoing reflux, diet, and use of nonsteroidal anti-inflammatory drugs (NSAIDs), to name just a few.

To accomplish these goals is a challenge in the best of circumstances. Given the current global financial problems, provision of funding to achieve these goals will be problematic and will require imaginative approaches. Synergies of funding that involve partnerships between governments, industries, and foundations should be sought.

Competing interests: BÄRRX provides research support to the author, who is also a consultant for C2 Therapeutics.

References

5 Bergman JF, Fockens P. Ablating Barrett’s metaplastic epithelium: are the techniques ready for clinical use? Gut 2006; 55: 1222 – 1223
7 Spechler SJ. Thermal ablation of Barrett’s esophagus: a heated debate. Am J Gastroenterol 2006; 101: 1770 – 1772
36 Dumot JA, Vargo JJ, Zuccaro G et al. Results of cryospray ablation for esophageal high grade dysplasia (HGD) and intramucosal cancer (IMCA) in high risk non-surgical patients. Gastrointest Endosc 2008; 67: AB176